欢迎光临伟顾德官方网站!产品专题 | 网站导航 | 联系我们

专注视觉自动化检测设备研发、生产

视觉自动化检测方案提供商
全国服务电话 全国服务电话 137-1385-0399
新闻资讯
联系我们
全国服务电话:137-1385-0399

电话:0769-81160840

传真:0769-87003946

邮箱:sales@wgdccd.com

地址:东莞市大朗镇黄草朗社区东胜路88号B栋9楼

产品中心
主页 > 新闻资讯 > 行业资讯 > 光学筛选机表面缺陷识别之无监督学习的模式识别

光学筛选机表面缺陷识别之无监督学习的模式识别

发布时间:2020-07-08 09:34 来源:伟顾德
         光学筛选机表面缺陷识别的无监督学习的模式识别的训练样本没有类别标签,主要以聚类分组来揭示模式结构,也称聚类。聚类是一个将数据集划分为若干组或簇的过程,使得同一类的数据对象之间的相似度较高,而不同类的数据对象之间的相似度较低。
         目前出现了大量的聚类算法,其选择取决于数据的类型、聚类的目的。主要的聚类算法可以划分为如下几类:划分方法、层次方法、密度方法、网格方法以及模型方法。
        1) 划分方法。划分法(partitioning methods)是聚类分析中最为常见的一种方法,其目的是将给定的数据对象集通过划分操作分成若干分组,每一个分组表示一个聚类。划分时需要预先指定聚类数目或聚类中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数值收敛时,得到最终聚类结果。常用的划分法有:K-means、K-medoids、CLARA、CLARANS、K-prototypes等。
        2) 层次方法。层次法(Hierarchical Methods)也称为树聚类算法,层次聚类是将数据对象集分解成几级逐级进行聚类,递归地对给定的数据对象集进行合并或分解,直到满足限制条件为止,其聚类结果最终以类别树的形式显示。层次方法根据分解方式的不同可以分为凝聚式(agglomerative)和分裂式(division)。层次算法不需要预先指定聚类的数目,但是在凝聚或分裂的层次聚类算法中,用户可以预先定义希望得到的聚类数目作为算法的结束条件,当该条件达到满足时,算法将终止。其代表算法有:BIRCH、CURE、CHAMELEON、ROCK、SBAC和BUBBLE等。
        3) 密度方法。密度方法(density-based methods)的指导思想是,只要一个区域中的点的密度大于某个阈值,就把它加到与之相近的聚类中去,即通过数据密度(单位区域内的实例数)来发现任意形状的类簇。该方法与其他方法的一个根本区别是:它不是基于距离的,而是基于密度的,这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其代表算法有:DBSCAN、OPTICS、DENCLUE、GDBSCAN、FDC算法等。
        4) 网格方法。基于网格的方法采用一个网格数据结构,该结构具有多分辨率,通过这个数据结构可以将对数据对象的处理转化为对网格空间的处理。这种方法首先将数据空间划分成为有限个单元的网格结构,然后通过算法对网格空间进行分割进而实现聚类的目的。此聚类算法常常与其他方法相结合,特别是与基于密度的聚类方法相结合。其代表算法有:在高维数据空间中基于网格和密度相结合的聚类方法(CLIQUE算法),基于小波变换的聚类方法(Wave-Cluster算法),利用存储在网格中的统计信息的STING算法。
       5) 图论算法。图论分裂聚类算法的主要思想是:构造一棵关于数据的最小生成树,通过删除最小生成树的最长边来形成类.基于图论的聚类算法主要包括RANDOMWALK、CHAMELEON、AUTOCLUST等。
       6) 模型算法。基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其他。该方法基于目标数据集由一系列的概率分布所决定这一假设,通过构造反映数据对象空间分布的密度函数来进行聚类。该算法通常分为两种:基于统计学的方法和基于神经网络的方法。前者主要有以分类树的形式创建层次聚类的COBWEB算法及其扩展COBWEB算法;后者主要有竞争学习型和自组织特征映射型(SOM)等。
 

上一篇:光学筛选机表面缺陷识别之有监督学习的模式识别 下一篇:基于机器视觉的表面缺陷检测主要问题和发展趋势
推荐商品
热门资讯
刘工 您好,欢迎咨询,李经理(13713850399)为您服务! 在线旺旺 点击这里给我发消息